Leveraging Artificial Intelligence (AI) in Competitive Intelligence (CI) Research
DOI:
https://doi.org/10.24883/eagleSustainable.v15i.469Palavras-chave:
Artificial Intelligence (AI), Large Language Models (LLMs), Scholarly Research, Competitive Intelligence (CI), GPT ModelsResumo
Objective: The rapid advancement of artificial intelligence (AI) has significantly influenced research and academic practices, prompting universities to create guidelines for student use of large language models (LLMs). However, there is ongoing debate among academic journals and conferences regarding the necessity of reporting AI assistance in manuscript development. This paper aims to explore diverse perspectives on the use of LLMs in scholarly research, particularly within the context of competitive intelligence (CI), and to offer guidelines for CI researchers on how to effectively leverage AI tools like GPT models.
Method: The study conducts a comprehensive review of existing literature on the integration of AI in academic research, focusing specifically on the capabilities of generative AI models such as ChatGPT-4, Scholar GPT, and Consensus GPT. These models, developed by OpenAI, are evaluated for their utility in various stages of the research process, including literature review, qualitative analysis, and data analysis. The analysis emphasizes how the quality of AI-generated outputs depends on the specificity of the user's input.
Results: While LLMs have demonstrated significant potential in enhancing literature reviews, qualitative research, and data analysis, the study finds that their full capabilities in academic research remain underexplored. The research highlights both the concerns about potential "contamination" of scholarly work through AI use and the benefits these models offer, especially when used strategically.
Conclusions: The article presents a structured guide for business researchers, with particular emphasis on those engaged in competitive intelligence, to integrate AI language models effectively throughout the research process. The findings underline the importance of input specificity and provide practical recommendations for leveraging LLMs to enhance research efficiency and output quality.
Downloads
Referências
Atkinson, C. F. (2024). Cheap, quick, and rigorous: Artificial intelligence and the systematic literature review. Social Science Computer Review, 42(2), 376-393. DOI: https://doi.org/10.1177/08944393231196281
Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., ... & Fung, P. (2023). A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023. DOI: https://doi.org/10.18653/v1/2023.ijcnlp-main.45
Bostrom, N. and Yudkowsky, E. (2018), “The ethics of artificial intelligence”, in Artificial Intelligence Safety and Security, Chapman and Hall/CRC, pp. 57-69. DOI: https://doi.org/10.1201/9781351251389-4
Boyd, A. (2023, October). Higher Ed Grapples with AI's Impact. Voltedu. Retrieved from https://voltedu.com/education-administration/higher-ed-grapples-with-ais-impact/
Brand, J., Israeli, A., & Ngwe, D. (2023). Using gpt for market research. Available at SSRN 4395751. DOI: https://doi.org/10.2139/ssrn.4395751
Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., ... & Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659. DOI: https://doi.org/10.1111/1748-8583.12524
Burger, B., Kanbach, D. K., Kraus, S., Breier, M., & Corvello, V. (2023). On the use of AI-based tools like ChatGPT to support management research. European Journal of Innovation Management, 26(7), 233-241. DOI: https://doi.org/10.1108/EJIM-02-2023-0156
Butson, R., & Spronken-Smith, R. (2024). AI and its implications for research in higher education: a critical dialogue. Higher Education Research & Development, 43(3), 563-577. DOI: https://doi.org/10.1080/07294360.2023.2280200
Chen, Y., Andiappan, M., Jenkin, T., & Ovchinnikov, A. (2023). A Manager and an AI Walk into a Bar: Does ChatGPT Make Biased Decisions Like We Do?. Available at SSRN 4380365. DOI: https://doi.org/10.2139/ssrn.4380365
Ciechanowski, L., Jemielniak, D., & Gloor, P. A. (2020). TUTORIAL: AI research without coding: The art of fighting without fighting: Data science for qualitative researchers. Journal of Business Research, 117, 322-330. DOI: https://doi.org/10.1016/j.jbusres.2020.06.012
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
Dwivedi, Y.K., Kshetri, N., Hughes, L., Slade, E.L., Jeyaraj, A., Kar, A.K., Baabdullah, A.M., Koohang, A., Raghavan, V., Ahuja, V., Albanna, A., Albashrawi, M.A., Al-Busaidi, A.S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., Chowdhury, S., Crick, T., Cunningham, S.W., Davies, G.H., Davison, R.M., De, R., Dennehy, D., Duan, Y., Dubey, R., Dwivedi, R., Edwards, J.S., Flavian, C., Gauld, R., Grover, V., Hu, M.C., Janssen, M., Jones, P., Junglas, I., Khorana, S., Kraus, S., Larsen, K.R., Latreille, P., Laumer, S., Malik, T.F., Mardani, A., Mariani, M., Mithas, S., Mogaji, E., Horn Nord, J., O’Connor, S., Okumus, F., Pagani, M., Pandey, N., Papagiannidis, S., Pappas, I.O., Pathak, N., Pries-Heje, I., Raman, R., Rana, N.P., Volker Rehm, S., Ribeiro-Navarrete, S., Richter, A., Rowe, F., Sarker, S., Carsten Stahl, B., Tiwari, M.K., van der Aalst, W., Venkatesh, V., Viglia, G., Wade, M., Walton, P., Wirtz, J. and Wright, R. (2023), “‘So what if ChatGPT wrote it?’ Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy”, International Journal of Information Management, Vol. 71, 102642, doi: 10.1016/j.ijinfomgt.2023.102642. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642
Garcia, M. B. (2024). Using AI tools in writing peer review reports: should academic journals embrace the use of ChatGPT?. Annals of biomedical engineering, 52(2), 139-140. DOI: https://doi.org/10.1007/s10439-023-03299-7
Giray, L. (2023). Prompt engineering with ChatGPT: a guide for academic writers. Annals of biomedical engineering, 51(12), 2629-2633. DOI: https://doi.org/10.1007/s10439-023-03272-4
Girotra, K., Meincke, L., Terwiesch, C., & Ulrich, K. T. (2023). Ideas are dimes a dozen: Large language models for idea generation in innovation. Available at SSRN 4526071. DOI: https://doi.org/10.2139/ssrn.4526071
Golan, R., Reddy, R., Muthigi, A., & Ramasamy, R. (2023). Artificial intelligence in academic writing: a paradigm-shifting technological advance. Nature reviews urology, 20(6), 327-328. DOI: https://doi.org/10.1038/s41585-023-00746-x
Gray, A. (2024). ChatGPT" contamination": estimating the prevalence of LLMs in the scholarly literature. arXiv preprint arXiv:2403.16887.
Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A., Tetlock, P. E., & Cunningham, W. A. (2023). AI and the transformation of social science research. Science, 380(6650), 1108-1109. DOI: https://doi.org/10.1126/science.adi1778
Hamilton, L., Elliott, D., Quick, A., Smith, S., & Choplin, V. (2023). Exploring the use of AI in qualitative analysis: A comparative study of guaranteed income data. International journal of qualitative methods, 22, 16094069231201504. DOI: https://doi.org/10.1177/16094069231201504
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis, (8th ed.). London: U.K., Cengage Learning.
Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big data and cognitive computing, 7(2), 62. DOI: https://doi.org/10.3390/bdcc7020062
Khalifa, M., & Albadawy, M. (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. Computer Methods and Programs in Biomedicine Update, 100145. DOI: https://doi.org/10.1016/j.cmpbup.2024.100145
Kesting, P. (2024). How artificial intelligence will revolutionize management studies: a Savagean perspective. Scandinavian Journal of Management, 40(2), 101330. DOI: https://doi.org/10.1016/j.scaman.2024.101330
Khlaif, Z. N., Mousa, A., Hattab, M. K., Itmazi, J., Hassan, A. A., Sanmugam, M., & Ayyoub, A. (2023). The potential and concerns of using AI in scientific research: ChatGPT performance evaluation. JMIR Medical Education, 9, e47049. DOI: https://doi.org/10.2196/47049
Knopp, M. I., Warm, E. J., Weber, D., Kelleher, M., & others. (2023). AI-Enabled Medical Education: Threads of Change, Promising Futures, and Risky Realities Across Four Potential Future Worlds. JMIR Medical Education, 2023(1). https://mededu.jmir.org/2023/1/e50373 DOI: https://doi.org/10.2196/50373
Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries?. Library hi tech news, 40(3), 26-29. DOI: https://doi.org/10.1108/LHTN-01-2023-0009
Meskó, B. (2023). Prompt engineering as an important emerging skill for medical professionals: tutorial. Journal of Medical Internet Research, 25, e50638. DOI: https://doi.org/10.2196/50638
Miller, J. P. (2012). Millennium Intelligence: Understanding and Conducting Competitive Intelligence in the Digital Age. Journal of Sustainable Competitive Intelligence, 2(2). https://doi.org/10.24883/IberoamericanIC.v2i2.42
Mouton, J., & Marais, H. C. (1988). Basic concepts in the methodology of the social sciences. Hsrc Press.
Nguyen-Trung, K., Saeri, A. K., & Kaufman, S. (2023). Applying ChatGPT and AI-powered tools to accelerate evidence reviews. DOI: 10.31219/osf.io/pcrqf DOI: https://doi.org/10.31219/osf.io/pcrqf
OpenAI. (2024). ChatGPT (4.0 version) [Large multimodal model]. https://chat.openai.com/chat
Park, Y. J., Kaplan, D., Ren, Z., Hsu, C. W., Li, C., Xu, H., ... & Li, J. (2024). Can ChatGPT be used to generate scientific hypotheses?. Journal of Materiomics, 10(3), 578-584. DOI: https://doi.org/10.1016/j.jmat.2023.08.007
Perkins, M., & Roe, J. (2023). Academic publisher guidelines on AI usage: A ChatGPT supported thematic analysis. F1000Research, 12. DOI: https://doi.org/10.12688/f1000research.142411.1
Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A., Rahaman, S.(2023). ChatGPT and Academic Research: A Review and Recommendations Based on Practical Examples. Journal of Education, Management and Development Studies, 3(1), 1-12. DOI: https://doi.org/10.52631/jemds.v3i1.175
Rane, N. L., Tawde, A., Choudhary, S. P., & Rane, J. (2023). Contribution and performance of ChatGPT and other Large Language Models (LLM) for scientific and research advancements: a double-edged sword. International Research Journal of Modernization in Engineering Technology and Science, 5(10), 875-899.
Rocha, I., & Lopes, L. L. S. (2023). The Process of Implementing Competitive Intelligence in a Service Organization. Journal of Sustainable Competitive Intelligence, 13, e0438. https://doi.org/10.24883/IberoamericanIC.v13i.438 DOI: https://doi.org/10.24883/IberoamericanIC.v13i.438
Sabol, M., Hair, J., Cepeda, G., Roldán, J. L., & Chong, A. Y. L. (2023). PLS-SEM in information systems: seizing the opportunity and marching ahead full speed to adopt methodological updates. Industrial Management & Data Systems, 123(12), 2997-3017. DOI: https://doi.org/10.1108/IMDS-07-2023-0429
Sarstedt, M., Adler, S. J., Rau, L., & Schmitt, B. (2024). Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines. Psychology & Marketing. DOI: https://doi.org/10.1002/mar.21982
Scopus. (2024). CiteScore metrics for Top 10% Journals: 5.3. Retrieved from https://www.scopus.com/sources.uri
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339. DOI: https://doi.org/10.1016/j.jbusres.2019.07.039
Vaid, S., Puntoni, S., & Khodr, A. (2023). Artificial intelligence and empirical consumer research: A topic modeling analysis. Journal of Business Research, 166, 114110. DOI: https://doi.org/10.1016/j.jbusres.2023.114110
Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. DOI: https://doi.org/10.1038/d41586-023-00288-7
Wang, M., Wang, M., Xu, X., Yang, L., Cai, D., & Yin, M. (2023). Unleashing ChatGPT's Power: A Case Study on Optimizing Information Retrieval in Flipped Classrooms via Prompt Engineering. IEEE Transactions on Learning Technologies. DOI: https://doi.org/10.1109/TLT.2023.3324714
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O(s) autor(es) autoriza(m) a publicação do texto na da revista;
O(s) autor(es) garantem que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
A revista não se responsabiliza pelas opiniões, idéias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
É reservado aos editores o direito de proceder a ajustes textuais e de adequação às normas da publicação.
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Atribuição-NãoComercial 4.0 Internacional.que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Esta licença permite que outros remixem, adaptem e criem a partir do seu trabalho para fins não comerciais, e embora os novos trabalhos tenham de lhe atribuir o devido crédito e não possam ser usados para fins comerciais, os usuários não têm de licenciar esses trabalhos derivados sob os mesmos termos.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre) emhttp://opcit.eprints.org/oacitation-biblio.html