Machine Learning Algorithms for Slow Fashion Consumer Prediction: Theoretical and Managerial Implications
DOI:
https://doi.org/10.24883/eagleSustainable.v13i.439Keywords:
Sustainability, Consumer Classification, Machine Learning, Environmental Awareness, Strategic Decision-makingAbstract
Purpose: To compare, propose, and discuss the implications of five machine learning algorithms for predicting Slow fashion consumer profiles.
Methodology/approach: We use the Python programming language to build the models with scikit-learn libraries. We tested the potential of five algorithms to correct classifier Slow fashion consumers: I) extremely randomized trees, II) random forest, III) support vector machine, IV) gradient boosting Tree, and V) naïve bayes.
Originality/Relevance: This paper's originality lies in its combination of sustainability concerns, consumer behavior analysis, and machine learning techniques. It addresses a critical issue in the fashion industry and offers practical implications that can be beneficial for companies seeking to align their practices with Slow fashion principles. This interdisciplinary approach makes it a relevant contribution to both academia and industry.
Key findings: The performance metrics revealed satisfactory values for all algorithms. Nevertheless, the support vector machine presents a better precision (96%) on the dataset for Slow fashion consumer profiling, while random forest performs the worst (87%).
Theoretical/methodological contributions: We understood that the model can be helpful for companies that wish to adopt more targeted and practical approaches in the context of Slow fashion, allowing them to make more informed and strategic decisions. Therefore, these insights can guide future research in optimizing machine learning applications for consumer behavior analysis and provide valuable guidance for fashion marketers seeking to enhance their targeting and engagement strategies.
Downloads
References
Abe, S. (2010). Support Vector Machines for Pattern Classification: Advances in Pattern Recognition. Springer, London. (https://doi.org/10.1007/978-1-84996-098-4). DOI: https://doi.org/10.1007/978-1-84996-098-4
Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A.J. (2020). A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In: Berry, M., Mohamed, A., Yap, B. (eds) Supervised and Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised Learning. Springer, Cham (https://doi.org/10.1007/978-3-030-22475-2_1). DOI: https://doi.org/10.1007/978-3-030-22475-2_1
Amaral, W. A. N., et al. (2019). Moda circular no Brasil. Esalq/USP.
Ayyadevara, V.K. (2018). Gradient Boosting Machine. In: Pro Machine Learning Algorithms. Apress, Berkeley, CA. (https://doi.org/10.1007/978-1-4842-3564-5). DOI: https://doi.org/10.1007/978-1-4842-3564-5
Bachute, M. R., & Subhedar, J. M. (2021). Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications, 6, 100164. (https://doi.org/10.1016/j.mlwa.2021.100164). DOI: https://doi.org/10.1016/j.mlwa.2021.100164
Baxter, M. (2011). Projeto de produto: guia prático para o design de novos produtos. Blucher.
Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967. (https://doi.org/10.1007/s10462-020-09896-5). DOI: https://doi.org/10.1007/s10462-020-09896-5
Berlim, L. (2016). Moda e sustentabilidade: uma reflexão necessária. Estação das Letras e Cores.
Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, 403, 412. (https://doi.org/10.1016/B978-0-12-809633-8.20473-1). DOI: https://doi.org/10.1016/B978-0-12-809633-8.20473-1
Breve, D. G., Gonzaga, L. S., & Mendes, F. D. (2018). Sustentabilidade como uma Tendência no Mercado da Moda. ModaPalavra e-periódico, 11(22), 311-331. (https://doi.org/10.5965/1982615x11222018311). DOI: https://doi.org/10.5965/1982615x11222018311
Bonaccorso, G. (2018). Machine Learning Algorithms: Popular algorithms for data science and machine learning. Packt Publishing Ltd.
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges, and trends. Neurocomputing, 408, 189-215. (https://doi.org/10.1016/j.neucom.2019.10.118). DOI: https://doi.org/10.1016/j.neucom.2019.10.118
Cheng, H., Shi, Y., Wu, L., Guo, Y., & Xiong, N. (2021). An intelligent scheme for big data recovery in Internet of Things based on multi-attribute assistance and extremely randomized trees. Information Sciences, 557, 66-83. (https://doi.org/10.1016/j.ins.2020.12.041). DOI: https://doi.org/10.1016/j.ins.2020.12.041
Chen, K., Guan, D., Yuan, W., Li, B., Khattak, A.M., & Alfandi, O. (2018). A Novel Feature Selection-Based Sequential Ensemble Learning Method for Class Noise Detection in High-Dimensional Data. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_5. DOI: https://doi.org/10.1007/978-3-030-05090-0_5
Chen, W., Hoyle, C., & Wassenaar, H.J. (2013). Fundamentals of Analytical Techniques for Modeling Consumer Preferences and Choices. In: Decision-Based Design. Springer, London. https://doi.org/10.1007/978-1-4471-4036-8_3. DOI: https://doi.org/10.1007/978-1-4471-4036-8_3
Cutler, A., Cutler, D.R., Stevens, J.R. (2012). Random Forests. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. (https://doi.org/10.1007/978-1-4419-9326-7_5). DOI: https://doi.org/10.1007/978-1-4419-9326-7_5
El Naqa, I., & Murphy, M.J. (2015). What Is Machine Learning? In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. (https://doi.org/10.1007/978-3-319-18305-3_1). DOI: https://doi.org/10.1007/978-3-319-18305-3
Ertekin, Z. O., & Atik, D. (2015). Sustainable Markets: Motivating Factors, Barriers, and Remedies for Mobilization of Slow fashion. Journal of Macromarketing, 31(1), 53-69. (https://doi.org/10.1177/0276146714535932). DOI: https://doi.org/10.1177/0276146714535932
Fabri, H. P., & Rodrigues, L. V. (2015). Slow fashion: perspectivas para um futuro sustentável. In Colóquio de Moda, 11
Fares, N., Lebbar, M., Sbihi, N. (2019). A Customer Profiling’ Machine Learning Approach, for In-store Sales in Fast Fashion. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. DOI: https://doi.org/10.1007/978-3-030-11928-7_53
Advances in Intelligent Systems and Computing, vol 915. Springer, Cham. (https://doi.org/10.1007/978-3-030-11928-7_53).
Fernández-Delgado et al. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15(2014), 3133-3181.
Fletcher, K. (2010). Slow fashion: An Invitation for Systems Change. Fashion Practice - The Journal of Design, Creative Process & the Fashion Industry, 2, 259-265. (https://doi.org/10.2752/175693810X12774625387594). DOI: https://doi.org/10.2752/175693810X12774625387594
Fletcher, K., & Grose, L. (2012). Moda e sustentabilidade: design para a mudança. Senac.
Geurts, P., Ernst, D. & Wehenkel, L. (2006). Extremely randomized trees. Mach. Learn., 63, 3–42. (https://doi.org/10.1007/s10994-006-6226-1). DOI: https://doi.org/10.1007/s10994-006-6226-1
Gurevich, Y. (2012). What Is an Algorithm?. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_3. DOI: https://doi.org/10.1007/978-3-642-27660-6_3
Güler, O., & Polat, K. (2022). Classification Performance of Deep Transfer Learning Methods for Pneumonia Detection from Chest X-Ray Images. Journal of Artificial Intelligence and Systems, 4, 107-126.
Jung, S., & Jin, B. (2014). A theoretical investigation of Slow fashion: sustainable future of the apparel industry. International Journal of Consumer Studies, 38(5), 510-519. (https://doi.org/10.1111/ijcs.12127). DOI: https://doi.org/10.1111/ijcs.12127
Jung, S., & Jin, B. (2016). From quantity to quality: understanding Slow fashion consumers for sustainability and consumer education. International Journal of Consumer Studies, 40(4), 410-421. (https://doi.org/10.1111/ijcs.12276). DOI: https://doi.org/10.1111/ijcs.12276
Langarizadeh, M., & Moghbeli, F. (2016). Applying naive bayesian networks to disease prediction: a systematic review. Acta Informatica Medica, 24(5), 364. (https:// doi.org/10.5455/aim.2016.24.364-369). DOI: https://doi.org/10.5455/aim.2016.24.364-369
Lian, Y., Zhang, G., Lee, J., & Huang, H. (2020). Review on big data applications in safety research of intelligent transportation systems and connected/automated vehicles. Accident Analysis & Prevention, 146, 105711. (https://doi.org/10.1016/j.aap.2020.105711). DOI: https://doi.org/10.1016/j.aap.2020.105711
Löbach, B. (2001). Design Industrial. Edgard Blücher.
Los, V. A., et al. (2021). Um estudo de caso sobre os impactos ambientais na produção do jeans em uma empresa de Jaraguá do Sul (SC). Revista Poliedro, 5(5), 82–102. (https://doi.org/10.15536/2594-4398.2021.v5.n5.pp.082-102.2651). DOI: https://doi.org/10.15536/2594-4398.2021.v5.n5.pp.082-102.2651
M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning, Cambridge, MA, USA:MIT Press, 2012.
Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Science and Research, 9(1), 381-386. (https://doi.org/10.21275/ART20203995). DOI: https://doi.org/10.21275/ART20203995
Mammone, A., Turchi, M., & Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3), 283-289. (https://doi.org/10.1002/wics.49). DOI: https://doi.org/10.1002/wics.49
Müller, M. C. (2016). Moda sustentável, consumo consciente e comunicação: estudo de casos no Rio Grande do Sul. Dissertação (Mestrado) - Universidade Fernando Pessoa.
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
Morse, L., Teodorescu, M.H.M., & Awwad, Y. et al. (2022). Do the Ends Justify the Means? Variation in the Distributive and Procedural Fairness of Machine Learning Algorithms. J Bus Ethics 181, 1083–1095. https://doi.org/10.1007/s10551-021-04939-5 DOI: https://doi.org/10.1007/s10551-021-04939-5
Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. (https://doi.org/10.3389/fnbot.2013.00021). DOI: https://doi.org/10.3389/fnbot.2013.00021
Niinimäki, K., et al. (2020). The environmental price of Fast fashion. Nature Reviews Earth & Environment, 1, 189–200. (https://doi.org/10.1038/s43017-020-0054-x). DOI: https://doi.org/10.1038/s43017-020-0039-9
Pinto, Liliane Araújo. (2021). Consumo Slow fashion e Bem-estar: influência da espiritualidade, da gratidão e do materialismo. João Pessoa.
Provost, F., Fawcett, T. (2013). Data Science for Business. O’Reilly Media, California.
Rajoub, B. (2020). Supervised and unsupervised learning. In Biomedical Signal Processing and Artificial Intelligence in Healthcare (pp. 51-89). Academic Press. (https://doi.org/10.1016/B978-0-12-818946-7.00003-2). DOI: https://doi.org/10.1016/B978-0-12-818946-7.00003-2
Rawassizadeh, R., Sen, T., Kim, S.J. et al. (2019). Manifestation of virtual assistants and robots into daily life: vision and challenges. CCF Trans. Pervasive Comp. Interact. 1, 163–174. (https://doi.org/10.1007/s42486-019-00014-1). DOI: https://doi.org/10.1007/s42486-019-00014-1
Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M. A., Shambour, M. K. Y., Alsalibi, A. I., & Gandomi, A. H. (2022). Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 145, 105458. (https://doi.org/10.1016/j.compbiomed.2022.105458). DOI: https://doi.org/10.1016/j.compbiomed.2022.105458
Sobreira, E. M. C., Silva, C. R. M., & Romero, C. B. A. (2020). Slow profile: estudo das orientações ao consumo de Slow fashion. Internext - Revista Eletrônica de Negócios Internacionais, 15(3), 103-127. (https://doi.org/10.18568/internext.v15i3.589). DOI: https://doi.org/10.18568/internext.v15i3.589
Sohail, A., & Arif, F. (2020). Supervised and unsupervised algorithms for bioinformatics and data science. Progress in biophysics and molecular biology, 151, 14-22. (https://doi.org/10.1016/j.pbiomolbio.2019.11.012). DOI: https://doi.org/10.1016/j.pbiomolbio.2019.11.012
Sokol, K., & Flach, P. (2020). One Explanation Does Not Fit All. Künstl Intell, 34, 235–250 (2020). https://doi.org/10.1007/s13218-020-00637-y. DOI: https://doi.org/10.1007/s13218-020-00637-y
Solino, L. J. S., Dantas, Í. J. M., Teixeira, B. M. L., Alves, I. T. P., & Medeiros, A. L. P. (2021). Slow profile potiguar: perfis de orientação ao consumo Slow fashion no Rio Grande do Norte. In: Anais do 3º Encontro Científico de Pesquisa em Design de Moda, Passos.
Solino, L. J. S., González, M. O. A., Siqueira, M. E. M., & Nascimento, W. A. (2015). Fast-fashion: uma revisão bibliográfica sistemática e agenda de pesquisa. Revista Produção Online, 15(3), 1021–1041. (https://doi.org/10.14488/1676-1901.v15i3.1947). DOI: https://doi.org/10.14488/1676-1901.v15i3.1947
Solino, L. J. S., Teixeira, B. M. L., & Dantas, Í. J. M. (2020). The sustainability in fashion: a systematic literature review on Slow fashion. International Journal for Innovation Education and Research, 8(10), 164–202. (https://doi.org/10.31686/ijier.vol8.iss10.2670). DOI: https://doi.org/10.31686/ijier.vol8.iss10.2670
Solino, L.J.S., De Medeiros Dantas, Í.J., De Lima Teixeira, B.M., Alves, I.T.P., De Medeiros, A.L.P. (2023). Research on the Potential of the Consumption of Slow fashion Products in Brazil. In: Broega, A.C., Cunha, J., Carvalho, H., Providência, B. (eds) Advances in Fashion and Design Research. CIMODE 2022. Springer, Cham. (https://doi.org/ 10.1007/978-3-031-16773-7_50). DOI: https://doi.org/10.1007/978-3-031-16773-7_50
Solomon, M. R., et al. (2016). Consumer Behavior: A European Perspective (5th ed.). Pearson.
Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert systems with applications, 134, 93-101. (https://doi.org/10.1016/j.eswa.2019.05.028). DOI: https://doi.org/10.1016/j.eswa.2019.05.028
Štefko, R., & Steffek, V. (2018). Key Issues in Slow Fashion: Current Challenges and Future Perspectives. Sustainmability, 10(7), p. 2270. (https://doi.org/10.3390/su10072270). DOI: https://doi.org/10.3390/su10072270
Stuart, R., & Norvig, P. Artificial Intelligence: A Modern Approach, Upper Saddle River, NJ, USA:Prentice-Hall, 2009.
Tseng, M. L., Chiu, A. S., & Liang, D. (2018). Sustainable consumption and production in business decision-making models. Resources, Conservation and Recycling, 128, 118-121. DOI: https://doi.org/10.1016/j.resconrec.2017.02.014
Veronese, O., & Laste, A. (2022). O trabalho escravo e Fast fashion: o flerte da indústria da moda com a servidão. Revista Direito e Justiça: Reflexões Sociojurídicas, 22(43), 171-185. DOI: https://doi.org/10.31512/rdj.v22i43.1009
Whales, S., & Pandey, G. (2013). A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics. In: IEEE 13th International Conference on Data Mining. Dallas, IEEE. DOI: https://doi.org/10.1109/ICDM.2013.21
Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve Bayes. Encyclopedia of machine learning, 15(1), 713-714. (https://doi.org/10.1007/978-0-387-30164-8_576). DOI: https://doi.org/10.1007/978-0-387-30164-8_576
Yang, Z., & Su, X. Customer Behavior Clustering Using SVM. Physics Procedia, v. 33, p. 1489-1496, 2012. (https://doi.org/10.1016/j.phpro.2012.05.243). DOI: https://doi.org/10.1016/j.phpro.2012.05.243
Zahay, D., & Griffin, A. (2010). Marketing strategy selection, marketing metrics, and firm performance. Journal of Business & Industrial Marketing, 25(2), 84-93. (https://doi.org/10.1108/08858621011017714). DOI: https://doi.org/10.1108/08858621011017714
Zhang, C., & Ma, Y. (.2014). Ensemble Machine Learning: Methods and Applications. Springer New York, NY. (https://doi.org/10.1007/978-1-4419-9326-7).
Zheng, A. and Casari, A. (2018) Feature Engineering for Machine Learning: Principles and techniques for Data Scientists. O’Reilly Media, Inc., Sebastopol.
Zhou, Z. (2021). Machine Learning. Singapore: Springer Nature. (https://doi.org/10.1007/978-981-15-1967-3).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iberoamerican Journal of Competitive Intelligence
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors who publish in this journal agree to the following terms: the author(s) authorize(s) the publication of the text in the journal;
2. The author(s) ensure(s) that the contribution is original and unpublished and that it is not in the process of evaluation by another journal;
3. The journal is not responsible for the views, ideas and concepts presented in articles, and these are the sole responsibility of the author(s);
4. The publishers reserve the right to make textual adjustments and adapt texts to meet with publication standards.
5. Authors retain copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Creative Commons Atribuição NãoComercial 4.0 internacional, which allows the work to be shared with recognized authorship and initial publication in this journal.
6. Authors are allowed to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g. publish in institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.
7. Authors are allowed and are encouraged to publish and distribute their work online (e.g. in institutional repositories or on a personal web page) at any point before or during the editorial process, as this can generate positive effects, as well as increase the impact and citations of the published work (see the effect of Free Access) at http://opcit.eprints.org/oacitation-biblio.html
• 8. Authors are able to use ORCID is a system of identification for authors. An ORCID identifier is unique to an individual and acts as a persistent digital identifier to ensure that authors (particularly those with relatively common names) can be distinguished and their work properly attributed.